Padametode jajargenjang terdapat beberapa langkah, yaitu sebagai berikut. 1) Gambar vektor pertama dan vektor kedua dengan titik pangkal berimpit. 2) gambarlah sebuah jajargenjang dengan kedua vektor tersebut sebagai sisi-sisinya. 3) Resultan kedua vektor adalah diagonal jajargenjang yang titik pangkalnya sama dengan titik pangkal kedua vektor. 4 Diketahui vektor , , dan . Nyatakan vektor dalam bentuk vektor kolom dari tiap persamaan berikut, kemudian tentukan panjang vektor . a. c. b. d. 8. Vektor Satuan dalam Bidang. Misalkan vektor . Vektor satuan dari vektor dilambangkan dengan (dibaca; "e topi"), adalah vektor yang searah dengan vektor dan besarnya . satu. satuan () Akantetapi, setiap vektor yang bukan vektor satuan bisa kita cari vektor satuannya. Misalkan ada vektor $ \vec{a} $ , maka vektor satuan dari vektor $ \vec{a} $ dilambangkan dengan $ e_\vec{a} $. Vektor satuan dari $ \vec{a} $ searah dengan vektor $ \vec{a} $ itu sendiri. Berikut kita rangkum rumus untuk mencari Panjang Vektor dan Vektor Satuan. Berdasarkankesamaan dua vektor, diperoleh sistem persamaan linear berikut. Solusi dari sistem persamaan tersebut di atas adalah k1 = 1 k 1 = 1 dan k2 = 2 k 2 = 2. Jadi, karena terdapat skalar-skalar k1 k 1 dan k2 k 2 yang memenuhi w = k1u+k2v w = k 1 u + k 2 v, maka w w merupakan kombinasi linear dari u u dan v v. Contoh 2: Sepertiyang terlihat di gambar, kamu harus menggunakan beberapa trigonometri untuk menyelesaikan vektor ini menjadi komponen-komponennya. Contoh Soal Komponen Vektor Contoh 1 : Besarnya suatu vektor F ⃗ adalah 10 satuan dan arah vektornya adalah 60 ° dengan horisontal. Temukan komponen vektor. Fx = F karena 60 ° = 10 ⋅12 = 5 Artikelini menjelaskan cara menggunakan komponen Konversi Kata ke Vektor di perancang Azure Machine Learning untuk melakukan tugas berikut: Menerapkan berbagai model Word2Vec (model pra-pelatihan Word2Vec, FastText, GloVe) pada badan teks yang Anda tentukan sebagai input. Membuat kosakata dengan penyematan kata. Penjelasannyasebagai berikut. 1. Dua buah vektor A dan B dikatakan sama, jika vektor-vektor tersebut memiliki besar/panjang dan arah yang sama tanpa memandang titik-titik awalnya (A = B). 2. Sebuah vektor yang arahnya berlawanan dengan vektor vektor-vektor komponen dari A pada sistem koordinat tegak lurus X, Y, dan Z. 12/4/2015 7 Vektor Vektordi Ruang Dimensi 2 dan 3 | 29. 2. Definisi Ruang-2 atau 𝑅 2 Ruang dimensi-2 atau ruang-2 (𝑅 2 ) adalah himpunan pasangan bilangan berurutan (𝑥, 𝑦), di mana x dan y adalah bilangan-bilangan real. Pasangan bilangan (𝑥, 𝑦) dinamakan titik (point) dalam 𝑅 2 , misal suatu titik P dapat ditulis 𝑃 (𝑥, 𝑦). vektorblajar pintar, 1 vector di bidang r dan ruang r, rangkuman vektor aljabar maths id, proyeksi vektor blognya anak matematika, rumus matematika kevinwahyudarmawan blogspot com, pelajaran soal amp rumus proyeksi orthogonal suatu vektor, contoh soal vektor contoh soal carapedia baca juga proyeksi skalar dan proyeksi vektor orthogonal cara menghitung panjang vektor panjang suatu vektor Tentukankomponen-komponen X dan Y dari vektor-vektor berikut, kemudian nyatakan tiap vektor dalam vektor-vektor satuan.a. Vektor D 10 m pada arah 217 .b. Vektor E 50 m pada arah -45 .c. Vektor F 36 m pada arah 330 . Pengertian dan Penggambaran Vektor; Vektor; Mekanika; Fisika qmTzf. Pada artikel Fisika kelas X kali ini, kamu akan mengetahui cara menjumlahkan vektor menggunakan tiga metode, yaitu metode grafis, analisis, dan uraian. — Siapa di antara kamu yang suka lari? Eits! Bukan lari dari masalah kehidupan loh, ya hehe. Tapi, olahraga lari, jogging gitu misalnya. Kamu tahu nggak nih, kalau jogging itu banyak manfaatnya, lho! Mulai dari meningkatkan kekebalan tubuh, fisik menjadi lebih fit dan segar, sampai menghilangkan stres. Wah, boleh juga tuh! Hitung-hitung, menghilangkan penat akibat banyaknya tugas di sekolah atau menyegarkan pikiran sebelum menghadapi ujian. Ngomong-ngomong masalah jogging, Rogu juga rutin melakukan jogging setiap Minggu pagi, lho. Biasanya, Rogu jogging di sekitar komplek tempat ia tinggal. Nah, berikut ini merupakan gambaran rute jogging yang biasa Rogu lewati. Kira-kira nih, kamu bisa nggak menghitung berapa jarak yang ditempuh Rogu dari titik A ke titik D? Wah, kalau itu sih caranya mudah sekali, ya. Kita hanya tinggal menjumlahkan jarak dari titik AB ke titik BC, lalu ke titik CD. Sehingga, AB + BC + CD = 550 m + 650 m + 700 m = m. Simpel banget, kan? Tapi, bagaimana dengan perpindahan Rogu dari titik A ke titik D? Nah, jika kamu ingat, perpindahan itu termasuk besaran vektor, Squad. Perpindahan ditentukan oleh kedudukan awal dan kedudukan akhir, serta dapat bertanda positif maupun negatif, bergantung pada arah perpindahannya. Gambar rute jogging Rogu di atas bisa kita analogikan sebagai vektor nih, dengan memisalkan F1 merupakan vektor di titik AB, F2 merupakan vektor di titik BC, dan F3 merupakan vektor di titik CD. Kemudian, perpindahan dari titik A ke titik D dapat ditentukan dengan mencari besar resultan vektornya saja. Apa itu resultan vektor? Resultan vektor adalah hasil dari penjumlahan dua atau lebih vektor. Terdapat beberapa metode yang bisa kita gunakan untuk mencari resultan vektor nih, di antaranya metode grafis, metode analisis vektor, atau metode uraian. So, kalau kamu mau tahu metode apa yang tepat untuk mencari besar perpindahan Rogu dari titik A ke titik D, yuk simak baik-baik artikel ini! 1. Metode grafis Metode yang pertama adalah metode grafis. Metode grafis adalah metode yang digunakan untuk menentukan besar resultan vektor dengan cara mengukurnya. Panjang resultan vektor dapat diukur menggunakan mistar penggaris, sedangkan besar sudut vektor arah vektor diukur menggunakan busur derajat. Perlu kamu ingat, pengukuran besar resultan vektor menggunakan metode grafis harus berdasarkan skala dan besar sudut yang tepat, ya. Nah, jika kamu menyimak cerita Rogu di atas, metode grafis ini merupakan metode yang tepat untuk mencari besar perpindahan Rogu dari titik A ke titik D. Langkah pertama yang bisa kamu lakukan adalah menetapkan skala dari masing-masing besaran vektor. Ingat! skala yang kita tentukan harus tepat dan juga sesuai ya, Squad. Berdasarkan cerita Rogu, besar vektor F1= 550 m, besar vektor F2= 650 m, dan besar vektor F3= 700 m. Misalkan, untuk ketiga vektor, kita menetapkan skala 100 m = 1 cm. Artinya, setiap panjang 100 m kita gambar dengan 1 cm di kertas. Jadi, vektor F1 dapat digambar sepanjang 5,5 cm, vektor F2 digambar sepanjang 6,5 cm, dan vektor F3 digambar sepanjang 7 cm. Paham sampai di sini? Kita lanjut, ya. Kemudian, langkah kedua adalah menggambar besar dan arah masing-masing vektor seperti pada gambar di bawah ini. Panjang vektor R = F1+F2+F3 dapat dihitung menggunakan penggaris. Sementara itu, sudut arah vektor R dihitung menggunakan busur derajat. Sebelumnya, kita sudah tahu ya kalau untuk mencari perpindahan dari satu titik ke titik lain kita hanya tinggal menghitung besar resultan vektornya saja, jadi sudah dapat kita ketahui nih kalau perpindahan Rogu dari titik A ke titik D adalah sebesar m. Jelas ya? Bagi yang belum paham, tulis saja pertanyaanmu di kolom komentar, oke? Oh iya, penggunaan metode grafis dalam menghitung jumlah dua atau lebih vektor ternyata memiliki kelemahan lho, yaitu dapat menimbulkan kesalahan sistematis. Nah, untuk menghindari kesalahan tersebut, kita dapat menggunakan metode yang akan kita bahas selanjutnya, yaitu metode analitis. 2. Metode analitis Metode analitis adalah metode yang digunakan untuk menentukan besar resultan vektor secara matematis dengan menggunakan rumus. Adapun rumus yang digunakan merupakan rumus kosinus cos untuk menentukan besar resultan vektor dan rumus sinus sin untuk menentukan arah resultan vektor. Sekarang, supaya kamu lebih mudah untuk memahami cara mencari besar dan arah resultan vektor menggunakan metode ini, yuk, langsung saja kita simak contoh soal berikut ini. Contoh soal Hitunglah besar dan arah vektor resultannya terhadap sumbu x positif! Penyelesaian a. Besar resultan vektor b. Arah resultan vektor Jadi, besar resultan vektornya adalah dan arah resultan vektornya adalah 22,3o terhadap sumbu x positif. Gimana, mudah, kan? Oke, selanjutnya, kita masuk ke metode penjumlahan vektor yang terakhir, nih. Apakah itu? Yap! Metode uraian. 3. Metode uraian Metode penjumlahan vektor yang terakhir adalah metode uraian. Pada materi sebelumnya, kamu telah mempelajari cara mencari komponen-komponen dari suatu vektor kan, Squad. Nah, pada metode uraian ini, sebelum kita mencari besar resultan vektor, kita uraikan terlebih dahulu vektor-vektor tersebut menjadi komponen vektor pada sumbu x dan komponen vektor pada sumbu y di koordinat kartesius. Kamu masih ingat kan cara mencari komponen vektor pada sumbu x dan y? Hayo, bagi yang sudah lupa, dipahami lagi ya materi sebelumnya. Setelah kita menguraikan vektor-vektor tersebut menjadi komponen vektor, barulah kita bisa mencari besar resultan vektornya, yaitu dengan menggunakan rumus dan arah resultan vektornya dengan rumus . Nah, ini artinya jumlah komponen-komponen vektor pada sumbu x dan artinya jumlah komponen-komponen vektor pada sumbu y. Perlu kamu perhatikan, besar suatu vektor akan selalu bernilai positif. Selain itu, dalam menentukan arah vektor, kita harus memperhatikan tanda Ax dan Ay yang nantinya akan menentukan kuadran dari vektor dalam sistem koordinat seperti pada tabel berikut ini Bingung? Tenang, nggak usah bingung-bingung, kita langsung coba kerjakan contoh soal di bawah ini saja, yuk! Let’s go! Contoh Soal Apabila F1 = 2 N, F2 = 10 N, dan F3 = 6 N, maka tentukan resultan dari ketiga vektor tersebut! Pembahasan Hal pertama yang bisa kita lakukan untuk mengerjakan soal di atas adalah dengan menguraikan vektor F1, F2, dan F3 terhadap sumbu x dan sumbu y. Pada sumbu x ➔F1x → -F1x = -2 N tanda negatif menandakan arah vektor ke kiri. ➔F2x = F2 sin θ → F2x = 10 sin 53°= 100,8 = 8 N tanda positif menandakan arah vektor ke kanan. ➔F3x = 0 N angka nol 0 menandakan F3 tidak memiliki proyeksi vektor/komponen vektor pada sumbu x karena F3 tegak lurus terhadap sumbu x. Jadi, Fx = F1x + F2x + F3x = -2 + 8 + 0 = 6 N Pada sumbu y ➔F1y = 0 N angka nol 0 menandakan F1 tidak memiliki proyeksi vektor/komponen vektor pada sumbu y karena F1 tegak lurus terhadap sumbu y. ➔F2y = -F2 cos θ = -10 cos 53° = -100,6 = -6 N tanda negatif menandakan arah vektor ke bawah. ➔F3y = 6 N tanda positif menandakan arah vektor ke atas. Jadi, Fy = F1y + F2y + F3y = 0 + 6 – 6 = 0 N Selanjutnya, setelah kita mengetahui komponen-komponen dari ketiga vektor di atas terhadap sumbu x dan y, maka kita dapat mencari resultan dari ketiga vektor tersebut. Jadi, resultan dari vektor F1, F2, dan F3 adalah 6 N. Gimana? Ternyata nggak sesulit yang kamu kira, kan? Oke, setelah kamu memahami ketiga metode penjumlahan vektor di atas, menurutmu, metode mana yang lebih mudah? Eits! Tapi ingat, jangan mentang-mentang kamu sreg dengan satu metode, terus metode yang lainnya tidak kamu pahami, deh. Kamu juga harus paham ketiga-tiganya, Squad. Siapa tahu keluar di ujian nanti. Oh iya, bagi yang masih belum paham dengan materi kali ini, atau ingin bertanya lebih lanjut pada ahlinya, kamu bisa lho dengan menggunakan aplikasi Ruangguru melalui fitur ruanglesonline. Di sana, kamu akan dibantu oleh para tutor yang handal untuk membahas soal dan memahami pelajaran via live chat. Belajar kamu jadi semakin praktis, deh! Jika kamu sedang mencari jawaban atas pertanya Komponen Komponen Vektor Dari Gambar Vektor Berikut Adalah, kamu berada di halaman yang tepat. Kami punya sekitar 10 tanya jawab mengenai Komponen Komponen Vektor Dari Gambar Vektor Berikut Adalah. Silakan baca lebih lanjut di bawah. perhatikan gambar berikut! tentukan komponen komponen vektor tsb terhadap sumbu Pertanyaan perhatikan gambar berikut! tentukan komponen komponen vektor tsb terhadap sumbu x dan Y F1x = 60 = 60.1/2 = 30 NF1y = 60 = 60.1/2 akar 3 = 30 akar 3 N F1x = 30 = 60.1/2 akar 3 = 10 akar 3 NF1y = 30 = 60.1/2 = 10 N Pertanyaan Komponen vektor sesuai gambar berikut adalah….  ​ Jawaban mana gambarnya Penjelasan kok GK ada gambarnya Sebuah vektor panjangnya 40 cm dan membentuk sudut 30° terhadap Pertanyaan Sebuah vektor panjangnya 40 cm dan membentuk sudut 30° terhadap sumbu X positif seperti diperlihatkan pada gambar berikut Tentukan komponen-komponen vektor tersebut pada sumbu X dan sumbu Y ​ Jawaban 20° Penjelasan maaf kalau salah ya kalau salah tolong di maafin 1. Sebuah vektor panjangnya 20 cm dan membentuk sudut 30° Pertanyaan 1. Sebuah vektor panjangnya 20 cm dan membentuk sudut 30° terhadap sumbu X positif seperti diperlihatkan pada gambar berikut. Tentukan komponen-komponen vektor tersebut pada sumbu X dan sumbu Y​ penjelasan dan langkah-langkah bersadarkan gambar berikut tulislah komponen – komponen vektor berikut Pertanyaan bersadarkan gambar berikut tulislah komponen – komponen vektor berikut Jawab Penjelasan dengan langkah-langkah OA = 5 OB = 4 OC = 5 PQ =6 r = akar 117 komponen-komponen vektor dari gambar vektor berikut adalah​ Pertanyaan komponen-komponen vektor dari gambar vektor berikut adalah​ FX= FX= 37 FX= 3/5=-6N tanda min utk menyatakan arah kekiri fy= fy= 37 fy= jawab c Penjelasan maaf klo salah semoga bermanfaat 2 Uraikan komponen-komponen vektor berikut dan gambarlah uraian komponennya. SN Pertanyaan 2 Uraikan komponen-komponen vektor berikut dan gambarlah uraian komponennya. SN 300 ION 20 N​ Komponen vektor pada sumbu X Fax = 20 cos 45 = 20 x [tex]frac{1}{2} sqrt{2}[/tex] = 10[tex]sqrt{2}[/tex] Fbx = 10 cos 60 = 10 x [tex]frac{1}{2}[/tex] = 5 Fcx = 5 cos 30 = 5 x [tex]frac{1}{2} sqrt{3}[/tex] = -2,5[tex]sqrt{3}[/tex] Komponen vektor pada sumbu Y Fay = 20 sin 45 = 20 x [tex]frac{1}{2} sqrt{2}[/tex] = 10[tex]sqrt{2}[/tex] Fby = -10 sin 60 = 10 x [tex]frac{1}{2} sqrt{3}[/tex] = -5[tex]sqrt{3}[/tex] Fcy = 5 sin 30 = 5 x [tex]frac{1}{2}[/tex] = 2,5 Penjelasan dengan langkah-langkah Diketahui Komponen vektor pada sumbu X Fax = 20 cos 45 Fbx = 10 cos 60 Fcx = -5 cos 30 Komponen vektor pada sumbu Y Fay = 20 sin 45 Fby = 10 sin 60 Fcy = 5 sin 30 Ditanya Uraikan komponen-komponen vektor berikut dan gambarlah uraian komponennya! Jawab Komponen vektor pada sumbu X Fax = 20 cos 45 = 20 x [tex]frac{1}{2} sqrt{2}[/tex] = 10[tex]sqrt{2}[/tex] Fbx = 10 cos 60 = 10 x [tex]frac{1}{2}[/tex] = 5 Fcx = 5 cos 30 = 5 x [tex]frac{1}{2} sqrt{3}[/tex] = -2,5[tex]sqrt{3}[/tex] Komponen vektor pada sumbu Y Fay = 20 sin 45 = 20 x [tex]frac{1}{2} sqrt{2}[/tex] = 10[tex]sqrt{2}[/tex] Fby = -10 sin 60 = 10 x [tex]frac{1}{2} sqrt{3}[/tex] = -5[tex]sqrt{3}[/tex] Fcy = 5 sin 30 = 5 x [tex]frac{1}{2}[/tex] = 2,5 Pelajari lebih lanjut Materi tentang vektor link BelajarBersamaBrainly SPJ1 Perhatikan vektor berikut Tentukan komponen vektor A, B dan C Pertanyaan Perhatikan vektor berikut Tentukan komponen vektor A, B dan C yang diwakili oleh gambar di atas!​ Jawaban C ใครอยากตอบ แม่ฉันไม่ต้องการที่จะออนไลน์ในเช่นภาพหรือไม้ที่มีส่วนร่วมในไม้ที่มีส่วนร่วมในไม้ที่มีส่วนร่วมในไม้ที่มีส่วนร่วมในไม้ที่มีส่วนร่วมในไม้ที่มีส่วนร่วมในไม้. Perhatikan gambar berikut!7 = 60 N52 = 20 NTentukan komponen-komponen Pertanyaan Perhatikan gambar berikut!7 = 60 N52 = 20 NTentukan komponen-komponen vektor tersebut terhadap sumbu X dan Y.​ Jawaban semoga membantu ya.. maaf kalau salah... D. Latihan Soal gambar vektor-vektor berikut komponen-komponen dari Pertanyaan D. Latihan Soal gambar vektor-vektor berikut komponen-komponen dari vektor-vektor berikut Jawaban mana bacaannya Penjelasan dengan langkah-langkah kalo gini gk bisa bantu Tidak cuma jawaban dari soal mengenai Komponen Komponen Vektor Dari Gambar Vektor Berikut Adalah, kamu juga bisa mendapatkan kunci jawaban atas pertanyaan seperti perhatikan gambar berikut!, bersadarkan gambar berikut, D. Latihan Soal, Perhatikan vektor berikut, and Sebuah vektor panjangnya. Kelas 10 SMAVektorPengertian dan Penggambaran VektorTentukan komponen-komponen X dan Y dari vektor-vektor berikut, kemudian nyatakan tiap vektor dalam vektor-vektor Vektor A 20 m pada arah Vektor B 30 m pada arah Vektor C 40 m pada arah dan Penggambaran VektorVektorMekanikaFisikaRekomendasi video solusi lainnya0113Tentukan hasil integral-integral berikut. a integral 2...Teks videoHaikal Friends pada soal ini kita akan menggunakan konsep dari vektor kita diminta untuk menentukan komponen-komponen X dan Y dari vektor vektor berikut dan kemudian yang harus dinyatakan dalam vektor satuan membentuk bagian A vektor a adalah 20 m pada arah 37 derajat bagian B vektor b adalah 30 M pada arah 60 derajat dan C vektor c adalah 40 m pada arah 150 derajat kita bagian A dulu ya bagian gambar dulu nih jadi tanda panah warna biru ini adalah a yang arahnya adalah Teta atau 37 derajat adalah 20 m dan Teta adalah 37 derajat komponen x nya adalah a x dan komponennya adalah a y a x rumusnya adalah a cos Teta dan air adalah a sin Teta x adalah 20 x + 37 derajat nilai a dan b adalah 20 * Sin 37 derajat sin Teta mendapatkan akses 16 M dan dalam 12 m s komponen x nya adalah 16 M dan komponennya adalah 12 m untuk dituliskan dalam vektor satuan jadi a = 16 I + 12 J untuk bagian B kita Gambarkan lagi dengan tanda panah warna biru adalah B dengan sudut elevasinya adalah Alfa di b adalah 30 m dan F adalah 60 derajat komponen x nya adalah b x dan komponen y adalah B yang vertikal ke atas ini adalah yang horizontal ke kanan adalah a cos Alfa dan b adalah B Sin Alfa + kenangan nya jadi 30 cos 60 derajat nilai BX dan 30 Sin 60 derajat adalah mendapatkan b x ada 15 m dan BC adalah 15 √ 3 m bentuk vektor satuan dari vektor b = 15 I + 5 3 j adalah vektor satuan untuk bagian C ini kita Gambarkan dekat terjadinya yang warna biru lalu komponen x adalah X dan komponen y adalah C dimana c x adalah arahnya ke kiri dan cewek dan arahnya ke atas maksudnya adalah gamaya adalah 40 m dan G adalah 150 derajat Rumus untuk mencari TFC adalah c * kan udah ma dan C adalah C Sin nama-nama skin angkanya jadi 40 * cos 150 derajat adalah C = 40 Sin 150° adalah C senggama atau C mendapatkan CX adalah negatif 20 akar 3 m dan C adalah 20 m. Tentukan vektor satuan dari C adalah negatif 20 akar 3 I + 20 J sampai juga berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul